Representing and Reasoning with Defaults for Learning Agent

نویسنده

  • Benjamin N. Grosof
چکیده

The challenge we address is to create autonomous, inductively learning agents that exploit and modify a knowledge base. Our general approach, embodied in a continuing research program (joint with Stuart Russell), is declarative bias, i.e., to use declarative knowledge to constrain the hypothesis space in inductive learning. In previous work, we have shown that many kinds of declarative bias can be relatively efficiently represented and derived from background knowledge. We begin by observing that the default, i.e., revisable, flavor of beliefs is crucial in applications, especially for competence to improve incrementally and for information to be acquired through communication, language, and sensory perception in integrated agents. We argue that much of learning in humans consists of "learning in the small" and is nothing more nor less than acquiring new plausible premise beliefs. Thus representation of defaults and plausible knowledge should be a central question for researchers aiming to design sophisticated learning agents that exploit a knowledge base. We show that such applications pose several representational requirements that are unfamiliar to most in the machine learning community, and whose combination has not been previously addressed by the knowledge representation community. These include: prioritization-type precedence between defaults; updating with new defaults, not just new for-sure beliefs; explicit reasoning about adoption of defaults and precedence between defaults; and integration of defaults with probabilistic and statistical beliefs. We show how, for the first time, to achieve all of these requiremetats, at least partially, in one declarative formalism: Defeasible Axiomatized Policy Circumscription, a generalized variant of circumscription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

Representing and Reasoning with Defaults For Learning Agents

The challenge we address is to create autonomous , inductively learning agents that exploit and modify a knowledge base. Our general approach, embodied in a continuing research program (joint with Stuart Rus-sell), is declarative bias, i.e., to use declarative knowledge to constrain the hypothesis space in inductive learning. In previous work, we have shown that many kinds of declarative bias c...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Desires and Defaults: A Framework for Planning with Inferred Goals

In this paper, I will describe a formalism designed to integrate reasoning about desires with planning. One motive for such a formalism is the need to create a framework for reasoning about actions and change that provides for flexible reasoning about goals. The ideas rely on a crucial distinction between prima facie and all-things-considered attitudes. I model prima facie beliefs and desires a...

متن کامل

Defaults and Relevance in Model-Based Reasoning

Reasoning with model-based representations is an intuitive paradigm, which has been shown to be theoretically sound and to possess some computational advantages over reasoning with formula-based representations of knowledge. This paper studies these representations and further substantiates the claim regarding their advantages. In particular, model-based representations are shown to eeciently s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002